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l. Preface

&
Abstract of the Talk

what we are talking about
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iractable engineering system challenges that must he met in this centyry
for human life as we know it to continue on this planet. The committee re-
ceived thousands of inputs from arcund the world to determine its list of
Grand Challenges for Engineering, and its report was reviewed by more
them 50 subject-mptter experts, making it armong the most reviewed of
Academy studies, The 14 Grand Challenges for Engineering are ta

Muks solar energy economical
Provide enengy from fusion
Develop carbon sequestration
Manage the nitrogen cysle
Provide access to clean water

Engineer the tools of sclentific discovery.

The Grand Challenges were not. anked T importance or likelihood of
solutlon, nor was any strategy proposed for solving them. Rather, they
were offered as o way to inapire the profession, young people, and the pub-
D¢ at large to seek the sohrtdons.

In 2010 a plan was put forth to prepare engineering studernts to think
about careers devoted to addressing the Grand Challenges. Called the NAE
Grand Challenge Scholars Program, it was the first specific action taken
towrard achieving solutions to the challenges on a globel scele.

In 2013 the first Global Orand Challenges Summit was held in London,
cosponsored by the Royal Acadery of Engineermg, the Chinese Academy
of Engineering, and the US Mational Academy of Engineering in their first
jorint effort. In September 2015 & second Global Grund Challenpres Surnmit
wag held in Bedfing, with more than 800 attendees invited by the three
aeademies. The third Global Grand Challenges Summit, to be hosted by the
NAE in the Undted States in 2017, will be beld in conjunction with a new
FIRST Robotics international event almed at engaging the world's youth on

07/06/2016 22:49



The 14 challenges were selected from hundreds of
suggestions from engineers, scientists, policymakers and
ordinary people around the world

Make solar energy affordable.

Provide energy from fusion

Develop carbon sequestration methods.
Manage the nitrogen cyclee.

Provide access to clean water.

Restore and improve urban infrastructure.
Advance health informatics.

Engineer better medicines.
Reverse-engineer the brain.

Prevent nuclear terror.

Secure cyberspace.

Enhance virtual reality.

Advance personalized learning.

Engineer the tools for scientific discovery.
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Cryptology, Information Security
& CyberSecurity

CYBERSECURITY

CRYPTOLOGY




Abstract

» Accordingly, this talk
addresses an approach for

* Animportant topic of Data design of compact encryption
Sclence Is Data Security which supports minimization of
where data confidentiality the overheads, fits into the
appears as a very important asymmetric implementation
issue. When a heavy constraints and provides
employment of encryption is certain level of the provable
necessary, minimization of the security.

overheads and fit into the
Implementation constraints are
required which preserve
cryptographic security as well

 The addressed approach is
based on a combination of
traditional encryption and
coding in order to provide
security enhancement of
lightweight encryption
algorithms which fits into the
Implementation constraints.



Il. A Historical Prospective

The First Computer
&
From Art of Secrtet Writing to Cryptology
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Cryptanalysis of Enigma

Known plaintext attacking Paradigm of Exhaustive
scenario Serach

» How to obtain the pairs ~ * How to perform serch
of corresponding over a set of hypothesis

plaintext & ciphertext . ..
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The working rebuilt Bomb at Bletchley Park museum. Each of

the rotating drums simulates the action of an Enigma rotor.
The (electro-mechanical) computer

-—-:-.v—
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Establishment of Cryptology
and Information Theory



Claude Shannon (1916-2001)




Two Key Papers

* Information Thory < Cryptology
e C. E. Shannon, “A e C. E. Shannon

mathematical theory "Communication
of communication”. Theory of Secrecy
Bell System Technical Systems". Bell
Journal, vol. 27, pp. System Technical
379-423 and 623— Journal, vol. 28 (4),

656, July and October pp. 656—715, 1949.
1948.



lll. Some Models of Noisy
Channels

Additive Noise
&
Synchronization Noise
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Noisy Channels

Channels with Additive Channels with
Noise Synchronization Noise

e Channels with insertion
e Channels wit deletions

e Channels with Insertion,
deletion and additive
noise

Erasure Channel

Binary Symmetric
Channel

Gaussian Channel

18



Binary Erasure Channel
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Figure 1: Binary erasure channel (BEC) with erasure probability &.
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Binary Summetric Channel
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Binary Channel with
Random Bit Deletion

Initial vector with bits subject to deletion

Shrinked vector after the chanel with random bits deletion

Deletion of bits is RANDOM - Positions of deleted bits are UNKNOWN
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Binary Channel with
Random Bit Insetion

Initial vector with bits subject to bit insertion

Expanded vector after the chanel with random bits insertion

Insertion of bits is RANDOM - Positions of insereted bits are UNKNOWN
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IV. The LPN Problems and
Two Cryptograhic Paradigms
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Security of Encryption and
Implementation Complexity

« Mainly based on e Security
heuristic assumptions enhancement

» Particularly when the appears as an
encryption is based Interesting approach

on employment of
finite state machines ¢« Asymmetric

e Lightweight Implementation
encryption implies complexity of
additional challenges encryption and

decryption also

appears as an
Interesting issue



The LPN Problems
(Learning Parity in Noise)

Basic Generalized
e Informally: Solving a e Informally: Solving a
system of linear system of linear
equations with “the right- equations with “the right-
hand sides” visible hand side” visible through
through a binary a channel with

symmetric channel. synchronization errors .
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Two Paradigms for
Security Enhancement

: Traditional Binary
Homophonic : :
: Cryptographic Symmetric
Encoding :
Processing Channel
Traditional Slmmulatlon_of
Crvotoaranhic a Channel with
yptograp Synchronization
Processing

Errors
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V. A Framework for Security
Enhancement Based on the Channels

with Synchronization Errors
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Desired Model of Encryption
an Attacker Should Face
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Encryption at Party |

Keystream Generator

Encryption at Party Il

Keystream Generator

Attacker Side
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A Framework for Encryption Based on Simulated Channels with

_’_>+

Synchronization Errors

stream-ciphering

Lightweight
Keystream Generator

error correction
decoding

error correction
encoding

simulated channel
with sync. errors

stream-ciphering

Lightweight
Keystream Generator

error correction
f decoding

error correction
encoding

simulated channel
with sync. errors
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A Framework for Encryption with Asymmetric Implementation Complexity

stream-ciphering

¢ error correction
v decoding
f (after channel with erasures)

Lightweight
Party I Keystream Generator

+ random bits
embedding

stream-ciphering

1

Party-II Lightweight

Keystream Generator

* error correction . .
+ ) decimation
_]_’ encoding

(for channel with erasures)
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A Linear Binary Block Code
Encoding Paradigm

‘ binary vector ‘

Generator Matrix of
Linear Block Code

g

codeword

channel with
bit erasures

degraded codeword
with erased bits

X




V.1 Particular Instantiation
Under Security Evaluation



A Framework for Encryption and Decryption with
Asymmetric Implementation Complexity

encryption Lightweight deterministic mapping

Keystream Generator G’ G

M C
> ‘ X random bits Y
+ embedding

Transmitting

Entity simulator of a
binary channel source of
with insertions randomness
decryption

Lightweight deterministic mapping

Keystream Generator | G’ G
Y

M ‘ C X
— +
Receiving

Entity




Two Approaches
for Security Evaluation

* Information  Computational

Theoretic Security Complexity Security

Evaluation Evaluation

36



V.2 Information-Theoretic
Security Evaluation



Preliminaries

Eve (the eavesdropper) and Bob (the intended
receiver) both receive the string Y () contain-
ing the randomly inserted symbols. The eaves-
dropper, not having access to the shared source
of randomness G, cannot easily parse the string
Y (") to recover X™. The intended receiver, on
the other hand, has access to G™, and since
G, represents the length of the inserted string
between any two symbols X, and X4, the
intended receiver (Bob) can easily remove the
inserted symbols B, from Y (") (i.e., decimate
Y(”)) to recover X™. In other words, by sharing
the source of randomness G™.

The sequence C" is a pseudo-random sequence,
but for the purpose of computing information-
theoretic quantities, we assume that C" is mod-
eled to be statistically indistinguishable from a
sequence of iid Bernoulli—% random variables.



The information-theoretic quantity of interest
IS the jud information rate defined as the in-
formation rate between X" and Y (™) when the
symbols X, are independent and uniformly dis-
tributed (iud)

The information rate Zj,q (X; Y) represents the
amount of information that the eavesdropper

raaia Y 'aY “’I\’\M "\'f'\f\ l'l‘ V -\ 7\ /\l"\f‘f\lf
cdadll caili , VIl dvlidytc, dvlouL A diLCl VUVUSC -
ina V. The information rate Z.. «+(X:Y) is not
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m le in Cl -form | inabl
using Monde-Carlo techniques



The information rate Zj,q (X;Y) is not com-
putable in closed-form, but is attainable using

Monde-Carlo techniques. For example, known
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lllustrative Numerical Example

Iiud ( X; )r)
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We already established that learning X after
observing Y is extremely unfavorable for the
eavesdropper because the information rate Zj ,q (X; Y)
is low for large insertion probabilities . How-

ever, the eavesdropper may adopt a strategy in

which she first attempts to /earn the sequence

G"™, and then attempt to crack X"™. To study

the effects of this strategy, let us define the
following quantities:

A 1 |
L
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Proposition 1:
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V.3 Computational Complexity
Security Evaluation



Definition 1: The Adversarial Indistinguisha-
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Definition 2. An encryption scheme provides
indistinguishable encryptions in the presence of
V ,i ISt Y,
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Theorem 1: lLet the encrypted mapping of
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Y. Liron and M. Langberg, “A Characterization of the Number of
Subsequences Obtained via the Deletion Channel”, IEEE Transactions
on Information Theory, vol. 61, no. 5, pp. 2300-2312, May 2015.

Let Dy(Z) be a set of subsequences of Z that
can be obtained from Z after t deletions. A
family of strings, named unbalanced strings
has been defined. A string is called unbal-
anced, if all of the runs of symbols in the string
are of length 1, except for one run. Let U&? be
a binary string of length £ with r runs, in which
all runs are of length 1, except for the i-th run
which is of length ¢ —r» + 1. Due to symme-
try |Dt(U£(;))| = |Dt(U€(;))|, and consequently
define

u(t,r,t) = |DUS) = 1DiUTD] . (1)

It has been shown that these extreme cases
have the least number of subsequences among
the unbalanced strings, as well as that they
have the least amount of subsequences among
all strings.



Y. Liron and M. Langberg, “A Characterization of the Number of
Subsequences Obtained via the Deletion Channel”, IEEE Transactions
on Information Theory, vol. 61, no. 5, pp. 2300-2312, May 2015.

Theorem (Closed-Form Formula for u(¢,r,t)):
Forallt<¥, 2<r<U{,

(i) when r > t:

t—2
u(l,rt) =d(rt) + ) d(r—2,i), (1)
i=t+r—~F—1
(i) when r < t:
r—3
u(l,r,t) =24 > dr—-2,i), (2)
i=t+r—~4—-1

where

) g r—1
d(r,i) = [D;ZH =3 () @3
j=0 J

assuming that d(r,0) = 1, and fori < 0, d(r,7) =
0, and that the following conventions are em-
ployed:

k

> a; =0 when j >k, (4)
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7

keystream generator is such that the follow-

ing is valid:

(1)

and

(2)

IM; X) <e.

insertions provides

(3)

* €

<

(87

—I(M;Y) <

(4)

a=1-——-log>(u(n+t,nt)),
where u(n+t¢,r,t) is number of certain equally

1v

likely subsequences.
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Concluding Notes



Thank You Very Much for the
Attention,

and
QUESTIONS Please!
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