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Value Proposition

• Understand your processes as they are. Not as you 
imagine them 

• Back your hypotheses with evidence. Not only 
intuitions and beliefs 

• Quantify the impact of redesign options. Before 
and after



Event Log
Mandatory Elements

Case ID Activity Timestamp
{

{
Optional Elements

AttributesResource
{ …

{



Challenges in Event Log 
Extracting

• Correlation (case ID is not explicitly recorded) 

• Timestamps (reliability, different sources) 

• Snapshots (duration / completeness of the log) 

• Scoping (Which tables of the DB do we need?) 

• Granularity







Discovery Basics: The a-
algorithm

• Ordering Relations >, →, ||, #


• Direct succession: x > y iff 
for some case x is directly 
followed by y


• Causality: x → y iff x > y 
and not y > x


• Parallel: x||y iff x > y and y 
> x


• Unrelated: x#y iff not x > y 
and not y > x
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a-algorithm continued...
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But...
• Spaghetti (needlessly 

complex) 

• Limitations about 

• Short-loops 

• Non-local 
dependencies 

• Non robust 

• Big computational time



A global approach: 
GeneticsGenetic Operator: Crossover 
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Genetic Operator: Mutation 
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152 5 Process Discovery: An Introduction

Fig. 5.23 The so-called
“flower Petri net” allowing
for any log containing
activities {a, b, . . . , h}

If the “flower model” is on one end of the spectrum, then the “enumerating
model” is on the other end of the spectrum. The enumerating model of a log simply
lists all the sequences possible, i.e., there is a separate sequential process fragment
for each trace in the model. At the start there is one big XOR split selecting one of
the sequences and at the end these sequences are joined using one big XOR join. If
such a model is represented by a Petri net and all traces are unique, then the number
of transitions is equal to the number of events in the log. The “enumerating model”
is simply an encoding of the log. Such a model is complex but, like the “flower
model”, has a perfect fitness.

Extreme models such as the “flower model” (anything is possible) and the “enu-
merating model” (only the log is possible) show the need for two additional dimen-
sions. A model is precise if it does not allow for “too much” behavior. Clearly, the
“flower model” lacks precision. A model that is not precise is “underfitting”. Under-
fitting is the problem that the model over-generalizes the example behavior in the
log, i.e., the model allows for behaviors very different from what was seen in the
log.

A model should generalize and not restrict behavior to the examples seen in the
log (like the “enumerating model”). A model that does not generalize is “overfit-
ting”. Overfitting is the problem that a very specific model is generated whereas
it is obvious that the log only holds example behavior, i.e., the model explains the
particular sample log, but a next sample log of the same process may produce a
completely different process model.

Process mining algorithms need to strike a balance between “overfitting” and
“underfitting”. A model is overfitting if it does not generalize and only allows for
the exact behavior recorded in the log. This means that the corresponding mining
technique assumes a very strong notion of completeness: “If the sequence is not in
the event log, it is not possible!”. An underfitting model over-generalizes the things
seen in the log, i.e., it allows for more behavior even when there are no indications
in the log that suggest this additional behavior (like in Fig. 5.23).

Let us now consider some examples showing that it is difficult to balance
between being too general and too specific. Consider, for example, WF-net N4
shown in Fig. 5.6 and N9 shown in Fig. 5.14. Both nets can produce the log
L9 = [⟨a, c, d⟩45, ⟨b, c, e⟩42], but only N4 can produce L4 = [⟨a, c, d⟩45, ⟨b, c, d⟩42,

⟨a, c, e⟩38, ⟨b, c, e⟩22]. Clearly, N4 is the logical choice for L4. Moreover, although



Is fitness enough?



4 model quality criteria
• Fitness (be able to replay the observed 

behavior) 
• Precision (do not allow too much additional 

behavior) 
• Generalization (avoid overfitting) 
• Simplicity (do not increase, beyond what is 

necessary, the number of entities required to 
explain the behavior)



Discovery Algorithms
• Heuristic Mining 

• Genetic Mining 

• Stochastic Task Graphs 

• α++ algorithm 

• ILP mining 

• LTL mining 

• Fuzzy mining 

• Hidden Markov models 

• State-based regions 

• ETM genetic algorithm 

• Multi-phase mining 

• ...



Real good results...
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• Multiple Perspectives / Context 

Awareness
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The number of unique 
activities

• A matter of feasibility,  performance & 
comprehension
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Graph partitioning to 
Divide & Conquer

• A connectivity 
metric 

• Two optimization 
criteria 
(Informativess, 
Robustness) 

• Graph 
partitioning

cij =
number of traces where i& j are directly connected

total number of traces

In =

P
i2Sn,j2Sn

cij
P

i2Sn,j2A
cij

Rn =

P
i2Sn,j /2Sn

cij

P
i2Sn,j2A

cij

minR = N �
NX

i=1

�i











Encouraging results...
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The number of distinct 
traces( variants)



Large Variability in Flow



simactivities (Ti,Tj ) =
a(i) ⋅a( j)
a(i) a( j)

=
ak (i)× ak ( j)k∑

ak (i)k∑
2
× ak ( j)k∑

2

simtransitions (Ti,Tj ) =
t(i) ⋅ t( j)
t(i) t( j)

=
tk (i)× tk ( j)k∑

tk (i)k∑
2
× tk ( j)k∑

2

Are Paths Similar?



Similarity Matrix



Spectral Clustering

• Degree Matrix D


• Laplacian matrix L 
(unnormalized)


• Largest eigenvectors 
matrix U


• Kmeans on U

L = D � S

di =
X

j

sij

D = diag{d1, . . . , dn}

Lu = �Du

U 2 <n⇤k



Now, it Makes More Sense



Why is this Important?  
(Hospital Case study)

• In retrospect, we were able to correlate 
the patients' clusters with their triage. 

• Communicate the parameters of 
operations management to doctors 

• Provide interesting insights  (e.g. 
economic crisis and night visitors)
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The Social Perspective - Volvo 
Case

“…restoring a customer’s normal service operation as 
quickly as possible when incidents arise ensuring that 
the best possible levels of service quality and 
availability are maintained.”



Social Patterns
• Push to Front (1st line can resolve the service request 

alone)  

• Ping-Pong (teams send the same case to each other 
again and again)
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Open Issues (Discovery)
• Computationally efficient process discovery 

algorithms 
• Evaluating process discovery algorithms 
• Model Quality Criteria 
• Balancing multiple criteria in Discovery & 

Conformance 
• Supervised / Semi-supervised process 

discovery 
• Mining Resource behavior - Social Networks



Open Issues (Other)
• Auditing - Diagnosis Analytics 
• Visual Analytics for Process Mining 
• Comparing / Merging Models 
• Decomposing process mining problems 
• Prediction - Recommendation for operational 

support (On-line PM) 
• Concept Drift and context-aware process mining 
• Trace Alignment (similar to sequence alignment 

in biology)



THANK YOU!

Dr. Pavlos Delias, EMATTECH, Greece 
pdelias@teiemt.gr, @PavlosDelias 


